Trimap segmentation for fast and user-friendly alpha matting

  • Authors:
  • Olivier Juan;Renaud Keriven

  • Affiliations:
  • CERTIS, ENPC, Marne-la-Vallée, France;CERTIS, ENPC, Marne-la-Vallée, France

  • Venue:
  • VLSM'05 Proceedings of the Third international conference on Variational, Geometric, and Level Set Methods in Computer Vision
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given an image, digital matting consists in extracting a foreground element from the background. Standard methods are initialized with a trimap, a partition of the image into three regions: a definite foreground, a definite background, and a blended region where pixels are considered as a mixture of foreground and background colors. Recovering these colors and the proportion of mixture between both is an under-constrained inverse problem, sensitive to its initialization: one has to specify an accurate trimap, leaving undetermined as few pixels as possible. First, we propose a new segmentation scheme to extract an accurate trimap from just a coarse indication of some background and/or foreground pixels. Standard statistical models are used for the foreground and the background, while a specific one is designed for the blended region. The segmentation of the three regions is conducted simultaneously by an iterative Graph Cut based optimization scheme. This user-friendly trimap is similar to carefully hand specified ones. As a second step, we take advantage of our blended region model to design an improved matting method coherent. Based on global statistics rather than on local ones, our method is much faster than standard Bayesian matting, without quality loss, and also usable with manual trimaps.