Kalman filter based error resilience for h.264 motion vector recovery

  • Authors:
  • Ki-Hong Ko;Seong-Whan Kim

  • Affiliations:
  • Department of Computer Science, Univ. of Seoul, Seoul, Korea;Department of Computer Science, Univ. of Seoul, Seoul, Korea

  • Venue:
  • PCM'05 Proceedings of the 6th Pacific-Rim conference on Advances in Multimedia Information Processing - Volume Part I
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose an error concealment technique to recover lost motion vectors at the H.264 decoder side. To recover the lost motion vectors, there are two simple techniques: (1) no prediction, where the lost motion vectors are set to zeros, and (2) the prediction using the average or median of spatially adjacent blocks’ motion vectors [1]. In this paper, we propose a Kalman filter based scheme for motion vector recovery, and experimented with two test image sequences: Mobile&Calendar and Susie. The experimental results show that our Kalman filter based motion vector recovery scheme improves at average 2 dB PSNR over conventional H.264 decoding with no error recovery. We also improve our scheme using Hilbert curve scan order for Kalman input, and we get 0.512 – 1.652 dB PSNR improvements with better subjective quality over line-by-line scan order.