Ensuring data storage security against frequency-based attacks in wireless networks

  • Authors:
  • Hongbo Liu;Hui Wang;Yingying Chen

  • Affiliations:
  • Dept. of ECE, Stevens Institute of Technology, Castle Point On Hudson, Hoboken, NJ;Dept. of Computer Science, Stevens Institute of Technology, Castle Point On Hudson, Hoboken, NJ;Dept. of ECE, Stevens Institute of Technology, Castle Point On Hudson, Hoboken, NJ

  • Venue:
  • DCOSS'10 Proceedings of the 6th IEEE international conference on Distributed Computing in Sensor Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

As wireless networks become more pervasive, the amount of the wireless data is rapidly increasing. One of the biggest challenges is how to store these data. To address this challenge, distributed data storage in wireless networks has attracted much attention recently, as it has major advantages over centralized approaches. To support the widespread adoption of distributed data storage, secure data storage must be achieved. In this work, we study the frequency-based attack, a type of attack that is different from previously well-studied ones, that exploits additional adversary knowledge to crack the encrypted data. To cope with frequency-based attacks, the straightforward 1-to-1 substitution encryption functions are not sufficient. We propose a data encryption strategy based on 1-to-n substitution via dividing and emulating techniques such that an attacker cannot derive the mapping relationship between the encrypted data and the original data based on their knowledge of domain values and their occurrence frequency. Our simulation results show that our data encryption strategy can achieve high security guarantee with low overhead.