Pattern recognition in bioinformatics: an introduction

  • Authors:
  • J. C. Rajapakse;L. Wong;R. Acharya

  • Affiliations:
  • BioInformatics Research Center, Nanyang Technological University, Singapore;National University of Singapore, Singapore;Computer Science and Engineering, The Penn State University

  • Venue:
  • PRIB'06 Proceedings of the 2006 international conference on Pattern Recognition in Bioinformatics
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

The information stored in DNA, a chain of four nucleotides (A, T, G, and C), is first converted to mRNA through the process of transcription and then converted to the functional form of life, proteins, through the process of translation. Only about 5% of the genome contains useful patterns of nucleotides, or genes, that code for proteins. The initiation of translation or transcription process is determined by the presence of specific patterns of DNA or RNA, or motifs. Research on detecting specific patterns of DNA sequences such as genes, protein coding regions, promoters, etc., leads to uncover functional aspects of cells. Comparative genomics focus on comparisons across the genomes to find conserved patterns over the evolution, which possess some functional significance. Construction of evolutionary trees is useful to know how genome and proteome are evolved over all species by ways of a complete library of motifs and genes.