Comparative analysis of kernel methods for statistical shape learning

  • Authors:
  • Yogesh Rathi;Samuel Dambreville;Allen Tannenbaum

  • Affiliations:
  • Georgia Institute of Technology, Atlanta, GA;Georgia Institute of Technology, Atlanta, GA;Georgia Institute of Technology, Atlanta, GA

  • Venue:
  • CVAMIA'06 Proceedings of the Second ECCV international conference on Computer Vision Approaches to Medical Image Analysis
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Prior knowledge about shape may be quite important for image segmentation. In particular, a number of different methods have been proposed to compute the statistics on a set of training shapes, which are then used for a given image segmentation task to provide the shape prior. In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding for doing shape analysis. The surfaces are represented as the zero level set of a signed distance function and shape learning is performed on the embeddings of these shapes. We carry out some experiments to see how well each of these methods can represent a shape, given the training set.