Efficient polynomial operations in the shared-coefficients setting

  • Authors:
  • Payman Mohassel;Matthew Franklin

  • Affiliations:
  • Department of Computer Science, University of California, Davis, CA;Department of Computer Science, University of California, Davis, CA

  • Venue:
  • PKC'06 Proceedings of the 9th international conference on Theory and Practice of Public-Key Cryptography
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We study the design of efficient and private protocols for polynomial operations in the shared-coefficients setting. We propose efficient protocols for polynomial multiplication, division with remainder, polynomial interpolation, polynomial gcd, and a few other operations. All the protocols introduced in this paper are constant-round, and more efficient than the general MPC. The protocols are all composable, and can be combined to perform more complicated functionalities. We focus on using a threshold additively homomorphic public key scheme due to the applications of our protocols. But, our protocols can also be securely computed in the information-theoretic setting. Finally, we mention some applications of our protocols to privacy-preserving set-operations.