Optimizing relative weights of alternatives with fuzzy comparative judgment

  • Authors:
  • Chung-Hsing Yeh;Yu-Hern Chang

  • Affiliations:
  • Clayton School of Information Technology, Faculty of Information Technology, Monash University, Clayton, Victoria, Australia;Department of Transportation and Communications Management, National Cheng Kung University, Tainan, Taiwan

  • Venue:
  • ICCSA'06 Proceedings of the 2006 international conference on Computational Science and Its Applications - Volume Part III
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents an optimal weighting approach for maximizing the overall preference value of decision alternatives based on a given set of weights and performance ratings. In policy analysis settings, relative weights for policy alternatives are subjectively assessed by a group of experts or stakeholders via surveys using comparative judgment. A hierarchical pairwise comparison process is developed to help make comparative judgment among a large number of alternatives with fuzzy ratio values. Performance ratings for policy alter- natives are obtained from objective measurement or subjective judgement. The preference value of an expert on a policy alternative is obtained by multiplying the weight of the alternative by its performance rating. Two optimization models are developed to determine the optimal weights that maximize the overall preference value of all experts or stakeholders. An empirical study of evaluating Taiwan's air cargo development strategies is conducted to illustrate the approach.