Traveling tournament scheduling: a systematic evaluation of simulated annealling

  • Authors:
  • Pascal Van Hentenryck;Yannis Vergados

  • Affiliations:
  • Computer Science Department, Brown University, Providence, RI;Computer Science Department, Brown University, Providence, RI

  • Venue:
  • CPAIOR'06 Proceedings of the Third international conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper considers all the variants of the traveling tournament problem (TTP) proposed in [17, 7] to abstract the salient features of major league baseball (MLB) in the United States. The variants include different distance metrics and both mirrored and non-mirrored schedules. The paper shows that, with appropriate enhancements, simulated annealing is robust across the distance metrics and mirroring. In particular, the algorithm matches or improves most best-known solutions and produces numerous new best solutions spread over all classes of problems. The main technical contribution underlying these results is a number of compositive neighborhood moves that aggregate sequences of existing moves; these novel moves preserve the mirroring or distance structure of the candidate schedule, while performing interesting transformations.