Transient analysis of a queuing system with matrix-geometric methods

  • Authors:
  • Péter Vaderna;Tamás Éltető

  • Affiliations:
  • Traffic Laboratory, Ericsson Research, Budapest, Hungary;Traffic Laboratory, Ericsson Research, Budapest, Hungary

  • Venue:
  • NEW2AN'06 Proceedings of the 6th international conference on Next Generation Teletraffic and Wired/Wireless Advanced Networking
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper investigates a queuing system with infinite number of servers where the arrival process is given by a Markov Arrival Process (MAP) and the service time follows a Phase-type (PH) distribution. They were chosen since they are simple enough to describe the model by exact methods. Moreover, highly correlated arrival processes and heavy-tailed service time distributions can be approximated by these tools on a wide range of time-scales. The transient behaviour of the system is analysed and the time-dependent moments of the queue length is computed explicitly by solving a set of differential equations. The results can be applied to models where performance of parallel processing is important. The applicability of the model is illustrated by dimensioning a WEB-based content provider.