Relational semantics for higher-order programs

  • Authors:
  • Kamal Aboul-Hosn;Dexter Kozen

  • Affiliations:
  • Department of Computer Science, Cornell University, Ithaca, NY;Department of Computer Science, Cornell University, Ithaca, NY

  • Venue:
  • MPC'06 Proceedings of the 8th international conference on Mathematics of Program Construction
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Most previous work on the semantics of higher-order programs with local state involves complex storage modeling with pointers and memory cells, complicated categorical constructions, or reasoning in the presence of context. In this paper we show how a relatively simple relational semantics can be used to avoid these complications. We provide a natural relational semantics for a programming language with higher-order functions. The semantics is purely compositional, with all contextual considerations completely encapsulated in the state. We show several equivalence proofs using this semantics based on examples of Meyer and Sieber (1988).