Self-stabilizing algorithms for graph coloring with improved performance guarantees

  • Authors:
  • Adrian Kosowski;Łukasz Kuszner

  • Affiliations:
  • Department of Algorithms and System Modeling, Gdańsk University of Technology, Poland;Department of Algorithms and System Modeling, Gdańsk University of Technology, Poland

  • Venue:
  • ICAISC'06 Proceedings of the 8th international conference on Artificial Intelligence and Soft Computing
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the self-stabilizing model we consider a connected system of autonomous asynchronous nodes, each of which has only local information about the system. Regardless of the initial state, the system must achieve a desirable global state by executing a set of rules assigned to each node. The paper deals with the construction of a solution to graph coloring in this model, a problem motivated by code assignment in wireless networks. A new method based on spanning trees is applied to give the first (to our knowledge) self-stabilizing algorithms working in a polynomial number of moves, which color bipartite graphs with exactly two colors. The complexity and performance characteristics of the presented algorithms are discussed for different graph classes.