Resources required for preparing graph states

  • Authors:
  • Peter Høyer;Mehdi Mhalla;Simon Perdrix

  • Affiliations:
  • Dept. of Comp. Sci., University of Calgary, Canada;Leibniz Laboratory, Grenoble, France;Leibniz Laboratory, Grenoble, France

  • Venue:
  • ISAAC'06 Proceedings of the 17th international conference on Algorithms and Computation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

Graph states have become a key class of states within quantum computation. They form a basis for universal quantum computation, capture key properties of entanglement, are related to quantum error correction, establish links to graph theory, violate Bell inequalities, and have elegant and short graph-theoretical descriptions. We give here a rigorous analysis of the resources required for producing graph states. Using a novel graph-contraction procedure, we show that any graph state can be prepared by a linear-size constant-depth quantum circuit, and we establish trade-offs between depth and width. We show that any minimal-width quantum circuit requires gates that acts on several qubits, regardless of the depth. We relate the complexity of preparing graph states to a new graph-theoretical concept, the local minimum degree, and show that it captures basic properties of graph states.