Effective elections for anonymous mobile agents

  • Authors:
  • Shantanu Das;Paola Flocchini;Amiya Nayak;Nicola Santoro

  • Affiliations:
  • School of Information Technology and Engineering, University of Ottawa, Canada;School of Information Technology and Engineering, University of Ottawa, Canada;School of Information Technology and Engineering, University of Ottawa, Canada;School of Computer Science, Carleton University, Canada

  • Venue:
  • ISAAC'06 Proceedings of the 17th international conference on Algorithms and Computation
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present distributed protocols for electing a leader among k mobile agents that are dispersed among the n nodes of a graph. While previous solutions for the agent election problem were restricted to specific topologies or under specific conditions, the protocols presented in this paper face the problem in the most general case, i.e. for an arbitrary topology where the nodes of the graph may not be distinctly labelled and the agents might be all identical (and thus indistinguishable from each other). In such cases, the agent election problem is often difficult, and sometimes impossible to solve using deterministic means. We have designed protocols for solving the problem that—unlike previous solutions—are effective, meaning that they always succeed in electing a leader under any given setting if at all it is possible, and otherwise detect the fact that election is impossible in that setting. We present several election protocols, all effective. Starting with the straightforward solution, that requires an exponential amount of edge-traversals by the agents, we describe significantly more efficient algorithms; in the latter the total number of edge-traversals made by the agents is always polynomial, their difference is in the amount of bits of storage they required at the nodes.