Testing computability by width-2 OBDDs where the variable order is unknown

  • Authors:
  • Dana Ron;Gilad Tsur

  • Affiliations:
  • School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel;School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

  • Venue:
  • CIAC'10 Proceedings of the 7th international conference on Algorithms and Complexity
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Property testing is concerned with deciding whether an object (e.g. a graph or a function) has a certain property or is “far” (for a prespecified distance measure) from every object with that property. In this work we design and analyze an algorithm for testing functions for the property of being computable by a read-once width-2 Ordered Binary Decision Diagram (OBDD), also known as a branching program, where the order of the variables is not known to us. That is, we must accept a function f if there exists an order of the variables according to which a width-2 OBDD can compute f. The query complexity of our algorithm is $\tilde{O}({\rm log n}){\rm poly}(1/\epsilon)$. In previous work (in Proceedings of RANDOM, 2009) we designed an algorithm for testing computability by an OBDD with a fixed order, which is known to the algorithm. Thus, we extend our knowledge concerning testing of functions that are characterized by their computability using simple computation devices and in the process gain some insight concerning these devices.