Kernelization for maximum leaf spanning tree with positive vertex weights

  • Authors:
  • Bart Jansen

  • Affiliations:
  • Utrecht University, Utrecht, TB, The Netherlands

  • Venue:
  • CIAC'10 Proceedings of the 7th international conference on Algorithms and Complexity
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper we consider a natural generalization of the well-known Max Leaf Spanning Tree problem. In the generalized Weighted Max Leaf problem we get as input an undirected connected graph G=(V,E), a rational number k≥1 and a weight function $w: V \longmapsto Q_{\geq 1}$ on the vertices, and are asked whether a spanning tree T for G exists such that the combined weight of the leaves of T is at least k. We show that it is possible to transform an instance 〈G,w, k 〉 of Weighted Max Leaf in linear time into an equivalent instance 〈G′,w′, k′ 〉 such that |V′|≤5.5k′ and k′≤k. In the context of fixed parameter complexity this means that Weighted Max Leaf admits a kernel with 5.5k vertices. The analysis of the kernel size is based on a new extremal result which shows that every graph G that excludes some simple substructures always contains a spanning tree with at least |V|/5.5 leaves.