Simultaneous learning of instantaneous and time-delayed genetic interactions using novel information theoretic scoring technique

  • Authors:
  • Nizamul Morshed;Madhu Chetty;Nguyen Xuan Vinh

  • Affiliations:
  • Monash University, Australia;Monash University, Australia;Monash University, Australia

  • Venue:
  • ICONIP'11 Proceedings of the 18th international conference on Neural Information Processing - Volume Part II
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Understanding gene interactions is a fundamental question in systems biology. Currently, modeling of gene regulations assumes that genes interact either instantaneously or with time delay. In this paper, we introduce a framework based on the Bayesian Network (BN) formalism that can represent both instantaneous and time-delayed interactions between genes simultaneously. Also, a novel scoring metric having firm mathematical underpinnings is then proposed that, unlike other recent methods, can score both interactions concurrently and takes into account the biological fact that multiple regulators may regulate a gene jointly, rather than in an isolated pair-wise manner. Further, a gene regulatory network inference method employing evolutionary search that makes use of the framework and the scoring metric is also presented. Experiments carried out using synthetic data as well as the well known Saccharomyces cerevisiae gene expression data show the effectiveness of our approach.