A probabilistic model for discovering high level brain activities from fMRI

  • Authors:
  • Jun Li;Dacheng Tao

  • Affiliations:
  • Center for Quantum Computation & Intelligent Systems, University of Technology, Sydney, Australia;Center for Quantum Computation & Intelligent Systems, University of Technology, Sydney, Australia

  • Venue:
  • ICONIP'11 Proceedings of the 18th international conference on Neural Information Processing - Volume Part I
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Functional magnetic resonance imaging (fMRI) has provided an invaluable method of investing real time neuron activities. Statistical tools have been developed to recognise the mental state from a batch of fMRI observations over a period. However, an interesting question is whether it is possible to estimate the real time mental states at each moment during the fMRI observation. In this paper, we address this problem by building a probabilistic model of the brain activity. We model the tempo-spatial relations among the hidden high-level mental states and observable low-level neuron activities. We verify our model by experiments on practical fMRI data. The model also implies interesting clues on the task-responsible regions in the brain.