Weighted improper colouring

  • Authors:
  • Julio Araujo;Jean-Claude Bermond;Frédéric Giroire;Frédéric Havet;Dorian Mazauric;Remigiusz Modrzejewski

  • Affiliations:
  • Mascotte, joint project I3S(CNRS/Univ. de Nice)/INRIA, France;Mascotte, joint project I3S(CNRS/Univ. de Nice)/INRIA, France;Mascotte, joint project I3S(CNRS/Univ. de Nice)/INRIA, France;Mascotte, joint project I3S(CNRS/Univ. de Nice)/INRIA, France;Mascotte, joint project I3S(CNRS/Univ. de Nice)/INRIA, France;Mascotte, joint project I3S(CNRS/Univ. de Nice)/INRIA, France

  • Venue:
  • IWOCA'11 Proceedings of the 22nd international conference on Combinatorial Algorithms
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we study a colouring problem motivated by a practical frequency assignment problem and up to our best knowledge new. In wireless networks, a node interferes with the other nodes the level of interference depending on numerous parameters: distance between the nodes, geographical topography, obstacles, etc. We model this with a weighted graph G where the weights on the edges represent the noise (interference) between the two end-nodes. The total interference in a node is then the sum of all the noises of the nodes emitting on the same frequency. A weighted t-improper k-colouring of G is a k-colouring of the nodes of G (assignment of k frequencies) such that the interference at each node does not exceed some threshold t. The Weighted Improper Colouring problem, that we consider here consists in determining the weighted t-improper chromatic number defined as the minimum integer k such that G admits a weighted t-improper k-colouring. We also consider the dual problem, denoted the Threshold Improper Colouring problem, where given a number k of colours (frequencies) we want to determine the minimum real t such that G admits a weighted t-improper k-colouring. We show that both problems are NP-hard and first present general upper bounds; in particular we show a generalisation of Lovász's Theorem for the weighted t-improper chromatic number. We then show how to transform an instance of the Threshold Improper Colouring problem into another equivalent one where the weights are either 1 or M, for a sufficient big value M. Motivated by the original application, we study a special interference model on various grids (square, triangular, hexagonal) where a node produces a noise of intensity 1 for its neighbours and a noise of intensity 1/2 for the nodes that are at distance 2. Consequently, the problem consists of determining the weighted t-improper chromatic number when G is the square of a grid and the weights of the edges are 1, if their end nodes are adjacent in the grid, and 1/2 otherwise. Finally, we model the problem using linear integer programming, propose and test heuristic and exact Branch-and-Bound algorithms on random cell-like graphs, namely the Poisson-Voronoi tessellations.