A unifying property for distribution-sensitive priority queues

  • Authors:
  • Amr Elmasry;Arash Farzan;John Iacono

  • Affiliations:
  • Computer Science Department, University of Copenhagen, Denmark;Max-Planck-Institut für Informatik, Saarbrücken, Germany;Polytechnic Institute of New York Univerity, Brooklyn, New York

  • Venue:
  • IWOCA'11 Proceedings of the 22nd international conference on Combinatorial Algorithms
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a priority queue that supports the operations: insert in worst-case constant time, and delete, delete-min, find-min and decrease-key on an element x in worst-case $O(\lg(\min\{w_x, q_x\}+2))$ time, where wx (respectively, qx) is the number of elements that were accessed after (respectively, before) the last access of x and are still in the priority queue at the time when the corresponding operation is performed. Our priority queue then has both the working-set and the queueish properties; and, more strongly, it satisfies these properties in the worst-case sense. We also argue that these bounds are the best possible with respect to the considered measures. Moreover, we modify our priority queue to satisfy a new unifying property — the time-finger property — which encapsulates both the working-set and the queueish properties. In addition, we prove that the working-set bound is asymptotically equivalent to the unified bound (which is the minimum per operation among the static-finger, static-optimality, and working-set bounds). This latter result is of tremendous interest by itself as it had gone unnoticed since the introduction of such bounds by Sleater and Tarjan [10]. Together, these results indicate that our priority queue also satisfies the static-finger, the static-optimality and the unified bounds.