Boosting set constraint propagation for network design

  • Authors:
  • Justin Yip;Pascal Van Hentenryck;Carmen Gervet

  • Affiliations:
  • Brown University, Providence, RI;Brown University, Providence, RI;German University in Cairo, New Cairo, Egypt

  • Venue:
  • CPAIOR'10 Proceedings of the 7th international conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper reconsiders the deployment of synchronous optical networks (SONET), an optimization problem naturally expressed in terms of set variables. Earlier approaches, using either MIP or CP technologies, focused on symmetry breaking, including the use of SBDS, and the design of effective branching strategies. This paper advocates an orthogonal approach and argues that the thrashing behavior experienced in earlier attempts is primarily due to a lack of pruning. It studies how to improve domain filtering by taking a more global view of the application and imposing redundant global constraints. The technical results include novel hardness results, propagation algorithms for global constraints, and inference rules. The paper also evaluates the contributions experimentally by presenting a novel model with static symmetric-breaking constraints and a static variable ordering which is many orders of magnitude faster than existing approaches.