A road to a formally verified general-purpose operating system

  • Authors:
  • Martin Děcký

  • Affiliations:
  • Department of Distributed and Dependable Systems, Faculty of Mathematics and Physics, Charles University, Prague 1, Czech Republic

  • Venue:
  • ISARCS'10 Proceedings of the First international conference on Architecting Critical Systems
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

Methods of formal description and verification represent a viable way for achieving fundamentally bug-free software. However, in reality only a small subset of the existing operating systems were ever formally verified, despite the fact that an operating system is a critical part of almost any other software system. This paper points out several key design choices which should make the formal verification of an operating system easier and presents a work-in-progress and initial experiences with formal verification of HelenOS, a state-of-the-art microkernel-based operating system, which, however, was not designed specifically with formal verification in mind, as this is mostly prohibitive due to time and budget constrains. The contribution of this paper is the shift of focus from attempts to use a single “silver-bullet” formal verification method which would be able to verify everything to a combination of multiple formalisms and techniques to successfully cover various aspects of the operating system. A reliable and dependable operating system is the emerging property of the combination, thanks to the suitable architecture of the operating system.