MetaHybrid: combining metamodels and gradient-based techniques in a hybrid multi-objective genetic algorithm

  • Authors:
  • Alessandro Turco

  • Affiliations:
  • ESTECO srl, Italy

  • Venue:
  • LION'05 Proceedings of the 5th international conference on Learning and Intelligent Optimization
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose a metamodel approach to the approximation of functions gradients within a hybrid genetic algorithm. The underlying structure is implemented in order to support parallel execution of the code: a genetic and a SQP algorithm run in different threads and can ask designs evaluations independently, but keeping all the available resources always working. A common archive collects the results and generates the population for the GA and the starting points for the SQP runs. A particular attention is dedicated to elitism and to constraints. The hybridization is performed through a modified ε−constrained method. The general philosophy of the algorithm is to concentrate on not wasting information: metamodels, archiving and elitism, steady-state parallel evolution are key elements for this scope and they will be discussed in details. A preliminary but explanatory row of tests concludes the paper highlighting the benefits of this new approach.