Fully automatic methodology for human action recognition incorporating dynamic information

  • Authors:
  • Ana González;Marcos Ortega Hortas;Manuel G. Penedo

  • Affiliations:
  • VARPA group, University of A Coruña, A Coruña, Spain;VARPA group, University of A Coruña, A Coruña, Spain;VARPA group, University of A Coruña, A Coruña, Spain

  • Venue:
  • CIARP'11 Proceedings of the 16th Iberoamerican Congress conference on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a star-skeleton-based methodology is described for analyzing the motion of a human target in a video sequence. Star skeleton is a fast skeletonization technique by connecting centroid of target object to its contour extremes. We represent the skeleton as a five-dimensional vector, which includes information about the positions of head and four limbs of a human shape in a given frame. In this manner, an action is composed of a sequence of star skeletons. With the purpose of use an HMM which allows model the actions, a posture codebook is built integrating star skeleton and motion information. With this last information we can distinct better between actions. Supervised (manual) and No-supervised methods (clustering-based methodology) have been used to create the posture codebook. The codebook is dependently of the actions to represent (We choose four actions as example: walk, jump, wave and jack). Obtained results show, firstly, including motion information is important to get a correctly differentiation between actions. On the other hand, using a clustering methodology to create the codebook causes a substantial improvement in results.