Inverse kinematics of a 6 DoF human upper limb using ANFIS and ANN for anticipatory actuation in ADL-based physical Neurorehabilitation

  • Authors:
  • Rodrigo Pérez-Rodríguez;Alexis Marcano-Cedeño;írsula Costa;Javier Solana;César Cáceres;Eloy Opisso;Josep M. Tormos;Josep Medina;Enrique J. Gómez

  • Affiliations:
  • Bioengineering and Telemedicine Centre, ETSI Telecomunicación, Technical University of Madrid, 28040 Madrid, Spain and Centro de Investigación Biomédica en Red, Biomateriales y Nano ...;Bioengineering and Telemedicine Centre, ETSI Telecomunicación, Technical University of Madrid, 28040 Madrid, Spain and Centro de Investigación Biomédica en Red, Biomateriales y Nano ...;Institut Universtiari de Neurorehabilitació Guttmann adscrit a la UAB, 08916 Barcelona, Spain;Bioengineering and Telemedicine Centre, ETSI Telecomunicación, Technical University of Madrid, 28040 Madrid, Spain and Centro de Investigación Biomédica en Red, Biomateriales y Nano ...;Bioengineering and Telemedicine Centre, ETSI Telecomunicación, Technical University of Madrid, 28040 Madrid, Spain and Centro de Investigación Biomédica en Red, Biomateriales y Nano ...;Institut Universtiari de Neurorehabilitació Guttmann adscrit a la UAB, 08916 Barcelona, Spain;Institut Universtiari de Neurorehabilitació Guttmann adscrit a la UAB, 08916 Barcelona, Spain;Institut Universtiari de Neurorehabilitació Guttmann adscrit a la UAB, 08916 Barcelona, Spain;Bioengineering and Telemedicine Centre, ETSI Telecomunicación, Technical University of Madrid, 28040 Madrid, Spain and Centro de Investigación Biomédica en Red, Biomateriales y Nano ...

  • Venue:
  • Expert Systems with Applications: An International Journal
  • Year:
  • 2012

Quantified Score

Hi-index 12.05

Visualization

Abstract

Objective: This research is focused in the creation and validation of a solution to the inverse kinematics problem for a 6 degrees of freedom human upper limb. This system is intended to work within a real-time dysfunctional motion prediction system that allows anticipatory actuation in physical Neurorehabilitation under the assisted-as-needed paradigm. For this purpose, a multilayer perceptron-based and an ANFIS-based solution to the inverse kinematics problem are evaluated. Materials and methods: Both the multilayer perceptron-based and the ANFIS-based inverse kinematics methods have been trained with three-dimensional Cartesian positions corresponding to the end-effector of healthy human upper limbs that execute two different activities of the daily life: 'serving water from a jar' and 'picking up a bottle'. Validation of the proposed methodologies has been performed by a 10 fold cross-validation procedure. Results: Once trained, the systems are able to map 3D positions of the end-effector to the corresponding healthy biomechanical configurations. A high mean correlation coefficient and a low root mean squared error have been found for both the multilayer perceptron and ANFIS-based methods. Conclusions: The obtained results indicate that both systems effectively solve the inverse kinematics problem, but, due to its low computational load, crucial in real-time applications, along with its high performance, a multilayer perceptron-based solution, consisting in 3 input neurons, 1 hidden layer with 3 neurons and 6 output neurons has been considered the most appropriated for the target application.