A timed-release key management scheme for backward recovery

  • Authors:
  • Maki Yoshida;Shigeo Mitsunari;Toru Fujiwara

  • Affiliations:
  • Osaka University, Osaka, Japan;u10 Networks, Tokyo, Japan;Osaka University, Osaka, Japan

  • Venue:
  • ICISC'05 Proceedings of the 8th international conference on Information Security and Cryptology
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

The timed-release encryption scheme is to encrypt a message so that a ciphertext can be decrypted when specific time in the future comes. Recently, interesting constructions of the timed-release encryption scheme have been proposed. The central concept of the constructions is a public agent which periodically broadcasts self-authenticated time information, called a time token. A time token contains absolute time information such as “08:09AM Dec. 1, 2005 GMT.” A sender encrypts a message so that a receiver of the ciphertext can generate a decryption key from a time token of the designated release time. Although the constructions have many advantages, resilience to missing time tokens is not still satisfactory since a time token can be used only for computing a decryption key of the corresponding time. A promising approach is to construct decryption keys so that a decryption key (e.g., of 08:09AM) can be computed not only from the corresponding time token but also from decryption keys of later time instants (e.g., 08:10AM, 08:11AM and so on). A trivial construction to realize such backward recovery is to use keys, which constitute a hash chain, for encrypting messages and encrypt these keys by using the timed-release encryption scheme. This construction is simple but requires the overhead of encryption. To reduce the overhead, this paper introduces a timed-release key management scheme in which decryption keys are related so that the backward property is provided. The feature is that a sender can choose freely and flexibly the time instants of which decryption keys have the backward property. The paper also gives an efficient construction based on a bilinear map.