Independent directed acyclic graphs for resilient multipath routing

  • Authors:
  • Sangman Cho;Theodore Elhourani;Srinivasan Ramasubramanian

  • Affiliations:
  • Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ;Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ;Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ

  • Venue:
  • IEEE/ACM Transactions on Networking (TON)
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In order to achieve resilient multipath routing, we introduce the concept of independent directed acyclic graphs (IDAGs) in this paper. Link-independent (node-independent) DAGs satisfy the property that any path from a source to the root on one DAG is link-disjoint (node-disjoint) with any path from the source to the root on the other DAG. Given a network, we develop polynomial-time algorithms to compute link-independent and node-independent DAGs. The algorithm developed in this paper: 1) provides multipath routing; 2) utilizes all possible edges; 3) guarantees recovery from single link failure; and 4) achieves all these with at most one bit per packet as overhead when routing is based on destination address and incoming edge. We show the effectiveness of the proposed IDAGs approach by comparing key performance indices to that of the independent trees and multiple pairs of independent trees techniques through extensive simulations.