Performance of MIMO over SUI channels for IEEE 802.16 networks

  • Authors:
  • R. Saravana Manickam;Lalit Dhingra;C. Siva Ram Murthy

  • Affiliations:
  • Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India;Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India;Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India

  • Venue:
  • ICDCN'12 Proceedings of the 13th international conference on Distributed Computing and Networking
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

Stanford University Interim (SUI) channel model has been proposed for simulations, design, development and testing of technologies suitable for IEEE 802.16 networks. SUI channel model proposes a set of six empirical time-dispersive channels for three typical terrain types. Most of the simulation studies for IEEE 802.16 networks involving Multi-Input Multi-Output (MIMO), either use a flat fading channel model or adopt an existing analytical/standard model, such as Kronecker model, 3GPP, IEEE 802.11 Broadband wireless models, and Pedestrian model A-B. Although this reduces the complexity of the channel models, it results in lower accuracy. This paper presents the evaluation of Bit Error Rate (BER) performance of various MIMO techniques for 2×2 and 4×4 antenna configurations, over SUI channel models. The encoding and decoding equations for Space-Time Block Code (STBC) $\mathcal{G}4$ and Spatial Multiplexing (SM) for frequency selective channels are also presented.