Eigenvalue techniques for convex objective, nonconvex optimization problems

  • Authors:
  • Daniel Bienstock

  • Affiliations:
  • APAM and IEOR Depts., Columbia University

  • Venue:
  • IPCO'10 Proceedings of the 14th international conference on Integer Programming and Combinatorial Optimization
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

A fundamental difficulty when dealing with a minimization problem given by a nonlinear, convex objective function over a nonconvex feasible region, is that even if we can efficiently optimize over the convex hull of the feasible region, the optimum will likely lie in the interior of a high dimensional face, “far away” from any feasible point, yielding weak bounds. We present theory and implementation for an approach that relies on (a) the S-lemma, a major tool in convex analysis, (b) efficient projection of quadratics to lower dimensional hyperplanes, and (c) efficient computation of combinatorial bounds for the minimum distance from a given point to the feasible set, in the case of several significant optimization problems. On very large examples, we obtain significant lower bound improvements at a small computational cost.