A multilevel heuristic for the rooted delay-constrained minimum spanning tree problem

  • Authors:
  • Martin Berlakovich;Mario Ruthmair;Günther R. Raidl

  • Affiliations:
  • Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria;Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria;Institute of Computer Graphics and Algorithms, Vienna University of Technology, Vienna, Austria

  • Venue:
  • EUROCAST'11 Proceedings of the 13th international conference on Computer Aided Systems Theory - Volume Part I
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

The rooted delay-constrained minimum spanning tree problem is an NP-hard combinatorial optimization problem. The problem appears in practice for example when designing a distribution network with a guarantee of timely delivery. Another example is be a centralized broadcasting network where the delaybound represents a quality of service constraint. We introduce a multilevel-based construction heuristic which uses a new measurement for the suitability of edges to create a solution for the problem. In comparison to existing heuristics the main intention is not to create a minimum cost spanning tree, but a solution with a high potential for further improvement. Experimental results indicate that in most cases our approach produces solutions that after local improvement are of higher quality than those of other existing construction techniques.