Maximizing network lifetime on the line with adjustable sensing ranges

  • Authors:
  • Amotz Bar-Noy;Ben Baumer

  • Affiliations:
  • The Graduate Center, City University of New York, New York, NY;The Graduate Center, City University of New York, New York, NY

  • Venue:
  • ALGOSENSORS'11 Proceedings of the 7th international conference on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Given n sensors on a line, each of which is equipped with a unit battery charge and an adjustable sensing radius, what schedule will maximize the lifetime of a network that covers the entire line? Trivially, any reasonable algorithm is at least a $\frac{1}{2}$ -approximation, but we prove tighter bounds for several natural algorithms. We focus on developing a linear time algorithm that maximizes the expected lifetime under a random uniform model of sensor distribution. We demonstrate one such algorithm that achieves an average-case approximation ratio of almost 0.9. Most of the algorithms that we consider come from a family based on RoundRobin coverage, in which sensors take turns covering predefined areas until their battery runs out.