Temporally-Constrained convolutive probabilistic latent component analysis for multi-pitch detection

  • Authors:
  • Emmanouil Benetos;Simon Dixon

  • Affiliations:
  • Centre for Digital Music, Queen Mary University of London, London, UK;Centre for Digital Music, Queen Mary University of London, London, UK

  • Venue:
  • LVA/ICA'12 Proceedings of the 10th international conference on Latent Variable Analysis and Signal Separation
  • Year:
  • 2012

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a method for multi-pitch detection which exploits the temporal evolution of musical sounds is presented. The proposed method extends the shift-invariant probabilistic latent component analysis algorithm by introducing temporal constraints using multiple Hidden Markov Models, while supporting multiple-instrument spectral templates. Thus, this model can support the representation of sound states such as attack, sustain, and decay, while the shift-invariance across log-frequency can be utilized for multi-pitch detection in music signals that contain frequency modulations or tuning changes. For note tracking, pitch-specific Hidden Markov Models are also employed in a postprocessing step. The proposed system was tested on recordings from the RWC database, the MIREX multi-F0 dataset, and on recordings from a Disklavier piano. Experimental results using a variety of error metrics, show that the proposed system outperforms a non-temporally constrained model. The proposed system also outperforms state-of-the art transcription algorithms for the RWC and Disklavier datasets.