Volumetric geometry reconstruction of turbine blades for aircraft engines

  • Authors:
  • David Großmann;Bert Jüttler

  • Affiliations:
  • MTU Aero Engines GmbH, Munich, Germany;Institute of Applied Geometry, Johannes Kepler University, Linz, Austria

  • Venue:
  • Proceedings of the 7th international conference on Curves and Surfaces
  • Year:
  • 2010

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a framework for generating a trivariate B-spline parametrization of turbine blades from measurement data generated by optical scanners. This new representation replaces the standard patch-based representation of industrial blade designs. In a first step, the blade surface is represented by a smoothly varying family of B-spline curves. In a second step, the blade is parametrized by a trivariate B-spline volume. The resulting model is suitable for numerical simulation via isogeometric analysis, as well as for a fully automatic structured mesh generation with standard finite elements. We focus on the industrial applicability of the framework, by using standard turbine blade features throughout the process.