Security of hash-then-CBC key wrapping revisited

  • Authors:
  • Yasushi Osaki;Tetsu Iwata

  • Affiliations:
  • Dept. of Computational Science and Engineering, Nagoya University, Japan;Dept. of Computational Science and Engineering, Nagoya University, Japan

  • Venue:
  • IMACC'11 Proceedings of the 13th IMA international conference on Cryptography and Coding
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Key wrapping schemes are used to encrypt data of high entropy, such as cryptographic keys. There are two known security definitions for key wrapping schemes. One captures the security against chosen plaintext attacks (called DAE-security), and the other captures known plaintext attacks (called AKW-security). In this paper, we revisit the security of Hash-then-CBC key wrapping schemes. At SKEW 2011, Osaki and Iwata showed that the U CC -then-CBC key wrapping scheme, a key wrapping scheme that uses the U CC hash function and the CBC mode, has provable AKW-security. In this paper, we show that the scheme achieves the stronger notion of DAE-security. We also show our proof in the variable input length setting, where the adversary is allowed making queries of varying lengths. To handle such a setting, we generalize the previous definition of the U CC hash function to the variable input length setting, and show an efficient construction that meets the definition. We next consider linear-then-CBC, 2nd-preimage-resistant-then-CBC, and universal-then-CBC schemes. At SAC 2009, Gennaro and Halevi noted that these schemes do not achieve DAE-security. However, details were not presented, and we show concrete and efficient chosen plaintext attacks on these schemes, and confirm that they do not achieve DAE-security.