Breaking fully-homomorphic-encryption challenges

  • Authors:
  • Phong Q. Nguyen

  • Affiliations:
  • INRIA, France and Tsinghua University, China

  • Venue:
  • CANS'11 Proceedings of the 10th international conference on Cryptology and Network Security
  • Year:
  • 2011

Quantified Score

Hi-index 0.00

Visualization

Abstract

Following Gentry's breakthrough work [7], there is currently great interest on fully-homomorphic encryption (FHE), which allows to compute arbitrary functions on encrypted data. Though the area has seen much progress recently (such as [10,11,5,2,1,8,6]), it is still unknown if fully-homomorphic encryption will ever become truly practical one day, or if it will remain a theoretical curiosity. In order to find out, several FHE numerical challenges have been proposed by Gentry and Halevi [9], and by Coron et al. [5], which provide concrete parameters whose efficiency and security can be studied. We report on recent attempts [3,4] at breaking FHE challenges, and we discuss the difficulties of assessing precisely the security level of FHE challenges, based on the state-of-the-art. It turns out that security estimates were either missing or too optimistic.