Zero-crossing based spectral analysis and SVD spectral analysis forformant frequency estimation in noise

  • Authors:
  • T.V. Sreenivas;R.J. Niederjohn

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Marquette Univ., Milwaukee, WI;-

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 1992

Quantified Score

Hi-index 35.68

Visualization

Abstract

The authors discuss a method for spectral analysis of noise corrupted signals using statistical properties of the zero-crossing intervals. It is shown that an initial stage of filter-bank analysis is effective for achieving noise robustness. The technique is compared with currently popular spectral analysis techniques based on singular value decomposition and is found to provide generally better resolution and lower variance at low signal to noise ratios (SNRs). These techniques, along with three established methods and three variations of these method, are further evaluated for their effectiveness for formant frequency estimation of noise corrupted speech. The theoretical results predict and experimental results confirm that the zero-crossing method performs well for estimating low frequencies and hence for first formant frequency estimation in speech at high noise levels (~0 dB SNR). Otherwise, J.A. Cadzow's high performance method (1983) is found to be a close alternative for reliable spectral estimation. As expected the overall performance of all techniques is found to degrade for speech data. The standard autocorrelation-LPC method is found best for clean speech and all methods deteriorate roughly equally in noise