Discrete Zak transforms, polyphase transforms, and applications

  • Authors:
  • H. Bolcskei;F. Hlawatsch

  • Affiliations:
  • Wien Univ.;-

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 1997

Quantified Score

Hi-index 35.69

Visualization

Abstract

We consider three different versions of the Zak (1967) transform (ZT) for discrete-time signals, namely, the discrete-time ZT, the polyphase transform, and a cyclic discrete ZT. In particular, we show that the extension of the discrete-time ZT to the complex z-plane results in the polyphase transform, an important and well-known concept in multirate signal processing and filter bank theory. We discuss fundamental properties, relations, and transform pairs of the three discrete ZT versions, and we summarize applications of these transforms. In particular, the discrete-time ZT and the cyclic discrete ZT are important for discrete-time Gabor (1946) expansion (Weyl-Heisenberg frame) theory since they diagonalize the Weyl-Heisenberg frame operator for critical sampling and integer oversampling. The polyphase representation plays a fundamental role in the theory of filter banks, especially DFT filter banks. Simulation results are presented to demonstrate the application of the discrete ZT to the efficient calculation of dual Gabor windows, tight Gabor windows, and frame bounds