On time-domain and frequency-domain MMSE-based TEQ design for DMT transmission

  • Authors:
  • K. Vanbleu;G. Ysebaert;G. Cuypers;M. Moonen

  • Affiliations:
  • Broadcom Corp., Mechelen, Belgium;-;-;-

  • Venue:
  • IEEE Transactions on Signal Processing - Part II
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

We reconsider the minimum mean square error (MMSE) time-domain equalizer (TEQ), bitrate maximizing TEQ (BM-TEQ), and per-tone equalizer design (PTEQ) for discrete multitone (DMT) transmission and cast them in a common least-squares (LS) based framework. The MMSE-TEQ design criterion can be formulated as a constrained linear least-squares (CLLS) criterion that minimizes a time-domain (TD) error energy. From this CLLS-based TD-MMSE-TEQ criterion, we derive two new least-squares (LS) based frequency-domain (FD) MMSE-TEQ design criteria: a CLLS-based FD-MMSE-TEQ criterion and a so-called separable nonlinear LS (SNLLS) based FD-MMSE-TEQ design. Finally, the original BM-TEQ design is shown to be equivalent to a so-called iteratively-reweighted (IR) version of the SNLLS-based FD-MMSE-TEQ design. This LS-based framework then results in the following contributions. The new, IR-SNLLS-based BM-TEQ design criterion gives rise to an elegant, iterative, fast converging, Gauss-Newton-based design algorithm that exploits the separability property. The intermediate FD-MMSE-TEQ designs establish a link between the TD-MMSE-TEQ on one hand and the BM-TEQ and the PTEQ on the other hand. Moreover, the considered LS-based equalizer designs-although at first sight very different in nature-exhibit remarkable correspondence when turned into equivalent generalized eigenvalue problems.