Stochastic Maximum-Likelihood Method for MIMO Propagation Parameter Estimation

  • Authors:
  • C. B. Ribeiro;E. Ollila;V. Koivunen

  • Affiliations:
  • Signal Process. Lab., Fed. Univ. of Rio de Janeiro;-;-

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 2007

Quantified Score

Hi-index 35.69

Visualization

Abstract

In this paper, we derive a stochastic maximum-likelihood (ML) method for estimating spatio-temporal parameters for multiple-input multiple-output (MIMO) channels. Such estimators are needed in propagation studies where extensive channel measurements and sounding are required. These are seminal tasks in the process of developing advanced channel models. The proposed method employs an angular von Mises distribution model which is appropriate for angular data observed in channel measurement campaigns. The signal model is stochastic, and consequentially the method is particularly useful for estimation of the diffuse scattering component. This approach leads to lower complexity and faster convergence in comparison to deterministic models. These benefits are due to lower dimensionality of the model, leading to a simpler optimization problem. The statistical performance of the estimator is studied by establishing the Crameacuter-Rao lower bound (CRLB) and comparing the variances. The simulations show that the variance of the proposed estimation technique reaches the CRLB for relatively small sample size. The estimator is robust in the sense that meaningful results are obtained when applied to data generated by channel models other than the one used in its derivation