Nonlinear Channel Equalization With Gaussian Processes for Regression

  • Authors:
  • F. Perez-Cruz;J.J. Murillo-Fuentes;S. Caro

  • Affiliations:
  • Electr. Eng. Dept., Princeton Univ., Princeton, NJ;-;-

  • Venue:
  • IEEE Transactions on Signal Processing - Part II
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose Gaussian processes for regression (GPR) as a novel nonlinear equalizer for digital communications receivers. GPR's main advantage, compared to previous nonlinear estimation approaches, lies on their capability to optimize the kernel hyperparameters by maximum likelihood, which improves its performance significantly for short training sequences. Besides, GPR can be understood as a nonlinear minimum mean square error estimator, a standard criterion for training equalizers that trades off the inversion of the channel and the amplification of the noise. In the experiment section, we show that the GPR-based equalizer clearly outperforms support vector machine and kernel adaline approaches, exhibiting outstanding results for short training sequences.