Underdetermined-order recursive least-squares adaptive filtering: the concept and algorithms

  • Authors:
  • B. Baykal;A.G. Constantinides

  • Affiliations:
  • Dept. of Electr. & Electron. Eng., Imperial Coll. of Sci., Technol. & Med., London;-

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 1997

Quantified Score

Hi-index 35.69

Visualization

Abstract

Underdetermined recursive least-squares (URLS) adaptive filtering is introduced. In particular, the URLS algorithm is derived and shown to be a direct consequence of the principle of minimal disturbance. By exploiting the Hankel structure of the filter input matrix, the fast transversal filter (FTF) version of the URLS algorithm (URLS-FTF) is derived including sliding window and growing window types. The computational complexity is reduced to O(N)+O(m), where N is the adaptive filter length, and m is the order of the URLS algorithm. In addition, the efficient URLS (EURLS) algorithm, which does not compute the filter coefficients explicitly, thereby significantly reducing the computational load, is presented. Some earlier adaptive algorithms such as the averaged LMS, filtered-X LMS, and fast conjugate gradient are shown to be suboptimal approximations of the URLS algorithm. Instrumental variable approximations are also discussed. The URLS algorithm has a whitening effect on the input, signal, which provides immunity to the eigenvalue spread of the input signal correlation matrix. Although the algorithm is sensitive to observation noise, it has good tracking characteristics, and tradeoffs can be found by tuning the step size. The utility of the URLS algorithms, in its basic form and FTF realization, depends heavily on the practical applicability of the mth-order sliding window estimate of the covariance matrix and mth-order PTF relations. The feasibility of the URLS family in practical applications is demonstrated in channel equalization and acoustic echo cancellation