Quantified Score

Hi-index 35.68

Visualization

Abstract

We consider the passive direction-of-arrival (DOA) estimation problem using arrays of acoustic vector sensors located in a fluid at or near a reflecting boundary. We formulate a general measurement model applicable to any planar surface, derive an expression for the Cramer-Rao bound (CRB) on the azimuth and elevation of a single source, and obtain a bound on the mean-square angular error (MSAE). We then examine two applications of great practical interest: hull-mounted and seabed arrays. For the former, we use three models for the hull: an ideal rigid surface for high frequency, an ideal pressure-release surface for low frequency, and a more complex, realistic layered model. For the seabed scenario, we model the ocean floor as an absorptive liquid layer. For each application, we use the CRB, MSAE bound, and beam patterns to quantify the advantages of using velocity and/or vector sensors instead of pressure sensors. For the hull-mounted application, we show that normal component velocity sensors overcome the well-known, low-frequency problem of small pressure signals without the need for an undesirable “stand-off” distance. For the seabed scenario, we also derive a fast wideband estimator of the source location using a single vector sensor