Quantified Score

Hi-index 35.68

Visualization

Abstract

In this paper, we introduce a new focusing technique for localization of wideband signals. Relaxing the unitary assumption for the focusing matrices, we formulate the least-square (LS) and the total least-square (TLS) coherent signal-subspace methods. The TLS is an alternative to the conventional LS and uses the fact that errors can exist both in the focusing location matrix as well as in the estimated location matrix at a given frequency bin. To prevent the focusing loss, we use a class of focusing matrices that are constant under multiplication by their Hermitian transpose. The class of unitary matrices comports with this property. We then develop a new focusing technique based on a modification to the TLS (MTLS). It is shown that the computational complexity of the new technique is significantly lower than that for the rotational signal subspace method (RSS). The focusing gain of the new technique is also larger than the focusing gain of the RSS algorithm. The simulation study shows that, compared with the RSS, the new algorithm has a smaller resolution signal to-noise ratio (SNR)