Interpolating multiwavelet bases and the sampling theorem

  • Authors:
  • I.W. Selesnick

  • Affiliations:
  • Dept. of Electr. Eng., Polytech.. Univ., Brooklyn, NY

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 1999

Quantified Score

Hi-index 35.68

Visualization

Abstract

This paper considers the classical sampling theorem in multiresolution spaces with scaling functions as interpolants. As discussed by Xia and Zhang (1993), for an orthogonal scaling function to support such a sampling theorem, the scaling function must be cardinal (interpolating). They also showed that the only orthogonal scaling function that is both cardinal and of compact support is the Haar function, which is not continuous. This paper addresses the same question, but in the multiwavelet context, where the situation is different. This paper presents the construction of compactly supported orthogonal multiscaling functions that are continuously differentiable and cardinal. The scaling functions thereby support a Shannon-like sampling theorem. Such wavelet bases are appealing because the initialization of the discrete wavelet transform (prefiltering) is the identity operator