Joint Detection-Estimation of Brain Activity in Functional MRI: A Multichannel Deconvolution Solution

  • Authors:
  • S. Makni;P. Ciuciu;J. Idier;J.-B. Poline

  • Affiliations:
  • -;-;-;-

  • Venue:
  • IEEE Transactions on Signal Processing
  • Year:
  • 2005

Quantified Score

Hi-index 35.69

Visualization

Abstract

Analysis of functional magnetic resonance imaging (fMRI) data focuses essentially on two questions: first, a detection problem that studies which parts of the brain are activated by a given stimulus and, second, an estimation problem that investigates the temporal dynamic of the brain response during activations. Up to now, these questions have been addressed independently. However, the activated areas need to be known prior to the analysis of the temporal dynamic of the response. Similarly, a typical shape of the response has to be assumed a priori for detection purpose. This situation motivates the need for new methods in neuroimaging data analysis that are able to go beyond this unsatisfactory tradeoff. The present paper raises a novel detection-estimation approach to perform these two tasks simultaneously in region-based analysis. In the Bayesian framework, the detection of brain activity is achieved using a mixture of two Gaussian distributions as a prior model on the “neural” response levels, whereas the hemodynamic impulse response is constrained to be smooth enough in the time domain with a Gaussian prior. All parameters of interest, as well as hyperparameters, are estimated from the posterior distribution using Gibbs sampling and posterior mean estimates. Results obtained both on simulated and real fMRI data demonstrate first that our approach can segregate activated and nonactivated voxels in a given region of interest (ROI) and, second, that it can provide spatial activation maps without any assumption on the exact shape of the Hemodynamic Response Function (HRF), in contrast to standard model-based analysis.