The Spherical-Shell Microphone Array

  • Authors:
  • B. Rafaely

  • Affiliations:
  • Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva

  • Venue:
  • IEEE Transactions on Audio, Speech, and Language Processing
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

Spherical microphone arrays have been recently studied for a wide range of applications. In particular, microphones arranged around an open or virtual sphere are useful in scanning microphone arrays for sound field analysis. However, open-sphere spherical arrays have been shown to have poor robustness at frequencies related to the zeros of the spherical Bessel functions. This paper presents a framework for the analysis of array robustness using the condition number of a given matrix, and then proposes several robust array configurations. In particular, a dual-sphere configuration previously presented which uses twice as many microphones compared to a single-sphere configuration is analyzed. This paper then shows that high robustness can be achieved without increasing the number of microphones by arranging the microphones in the volume of a spherical shell. Another simpler configuration employs a single sphere and an additional microphone at the sphere center, showing improved robustness at the low-frequency range. Finally, the white-noise gain of the arrays is investigated verifying that improved white-noise gain is associated with lower matrix condition number.