Fault identification for robot manipulators

  • Authors:
  • M. L. McIntyre;W. E. Dixon;D. M. Dawson;I. D. Walker

  • Affiliations:
  • Holcombe Dept. of Electr. & Comput. Eng., Clemson Univ., SC, USA;-;-;-

  • Venue:
  • IEEE Transactions on Robotics
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

Several factors must be considered for robotic task execution in the presence of a fault, including: detection, identification, and accommodation for the fault. In this paper, a nonlinear observer is used to identify a class of actuator faults once the fault has been detected by some other method. Advantages of the proposed fault-identification method are that it is based on the nonlinear dynamic model of a robot manipulator (and hence, can be extended to a number of general Euler Lagrange systems), it does not require acceleration measurements, and it is independent from the controller. A Lyapunov-based analysis is provided to prove that the developed fault observer converges to the actual fault. Experimental results are provided to illustrate the performance of the identification method.