Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation

  • Authors:
  • Yan Jin;I. -M. Chen;Guilin Yang

  • Affiliations:
  • Sch. of Mech. & Aerosp. Eng., Nanyang Technol. Univ., Singapore;-;-

  • Venue:
  • IEEE Transactions on Robotics
  • Year:
  • 2006

Quantified Score

Hi-index 0.00

Visualization

Abstract

A new three-limb, six-degree-of-freedom (DOF) parallel manipulator (PM), termed a selectively actuated PM (SA-PM), is proposed. The end-effector of the manipulator can produce 3-DOF spherical motion, 3-DOF translation, 3-DOF hybrid motion, or complete 6-DOF spatial motion, depending on the types of the actuation (rotary or linear) chosen for the actuators. The manipulator architecture completely decouples translation and rotation of the end-effector for individual control. The structure synthesis of SA-PM is achieved using the line geometry. Singularity analysis shows that the SA-PM is an isotropic translation PM when all the actuators are in linear mode. Because of the decoupled motion structure, a decomposition method is applied for both the displacement analysis and dimension optimization. With the index of maximal workspace satisfying given global conditioning requirements, the geometrical parameters are optimized. As a result, the translational workspace is a cube, and the orientation workspace is nearly unlimited.