Large-Scale 6-DOF SLAM With Stereo-in-Hand

  • Authors:
  • L. M. Paz;P. Pinies;J. D. Tardos;J. Neira

  • Affiliations:
  • -;-;-;-

  • Venue:
  • IEEE Transactions on Robotics
  • Year:
  • 2008

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we describe a system that can carry out simultaneous localization and mapping (SLAM) in large indoor and outdoor environments using a stereo pair moving with 6 DOF as the only sensor. Unlike current visual SLAM systems that use either bearing-only monocular information or 3-D stereo information, our system accommodates both monocular and stereo. Textured point features are extracted from the images and stored as 3-D points if seen in both images with sufficient disparity, or stored as inverse depth points otherwise. This allows the system to map both near and far features: the first provide distance and orientation, and the second provide orientation information. Unlike other vision-only SLAM systems, stereo does not suffer from ldquoscale driftrdquo because of unobservability problems, and thus, no other information such as gyroscopes or accelerometers is required in our system. Our SLAM algorithm generates sequences of conditionally independent local maps that can share information related to the camera motion and common features being tracked. The system computes the full map using the novel conditionally independent divide and conquer algorithm, which allows constant time operation most of the time, with linear time updates to compute the full map. To demonstrate the robustness and scalability of our system, we show experimental results in indoor and outdoor urban environments of 210 m and 140 m loop trajectories, with the stereo camera being carried in hand by a person walking at normal walking speeds of 4--5 km/h.