Equal-gain and maximal-ratio combining over nonidentical Weibull fading channels

  • Authors:
  • G. K. Karagiannidis;D. A. Zogas;N. C. Sagias;S. A. Kotsopoulos;G. S. Tombras

  • Affiliations:
  • Nat. Obs. of Athens, Inst. for Space Applic. & Remote Sensing, Athens, Greece;-;-;-;-

  • Venue:
  • IEEE Transactions on Wireless Communications
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

We study the performance of L-branch equal-gain combining (EGC) and maximal-ratio combining (MRC) receivers operating over nonidentical Weibull-fading channels. Closed-form expressions are derived for the moments of the signal-to-noise ratio (SNR) at the output of the combiner and significant performance criteria, for both independent and correlative fading, such as average output SNR, amount of fading and spectral efficiency at the low power regime, are studied. We also evaluate the outage and the average symbol error probability (ASEP) for several coherent and noncoherent modulation schemes, using a closed-form expression for the moment-generating function (mgf) of the output SNR for MRC receivers and the Pade´ approximation to the mgf for EGC receivers. The ASEP of dual-branch EGC and MRC receivers is also obtained in correlative fading. The proposed mathematical analysis is complimented by various numerical results, which point out the effects of fading severity and correlation on the overall system performance. Computer simulations are also performed to verify the validity and the accuracy of the proposed theoretical approach.