MIMO channel capacity and modeling issues on a measured indoor radio channel at 5.8 GHz

  • Authors:
  • R. Stridh;Kai Yu;B. Ottersten;P. Karlsson

  • Affiliations:
  • Dept. of Signals, R. Inst. of Technol., Stockholm, Sweden;-;-;-

  • Venue:
  • IEEE Transactions on Wireless Communications
  • Year:
  • 2005

Quantified Score

Hi-index 0.01

Visualization

Abstract

Multiple transmitters and receivers can be used to provide high link capacity in future wireless systems. Herein, an analysis of indoor environment multiple-input-multiple-output (MIMO) measurements in the industrial, scientific, and medical (ISM) band at 5.8 GHz is performed and the possible increase in capacity, utilizing multiple transmitters and receivers is examined. The investigation shows that in the measured indoor environment, the scattering is sufficiently rich to provide substantial link capacity increases. Furthermore, the effect of intra-element spacing on the channel capacity is studied. Our investigation also shows that the envelope of the channel coefficients for this obstructed-line-of-sight (OLOS) indoor scenario is approximately Rayleigh distributed and the MIMO channel covariance matrix can be well approximated by a Kronecker product of the covariance matrices describing the correlation at the transmitter side and the receiver side, respectively. A statistical narrowband model for the OLOS indoor MIMO channel based on this covariance structure is presented.